Spatial Decision Forests for MS Lesion Segmentation in Multi-Channel MR Images
نویسندگان
چکیده
A new algorithm is presented for the automatic segmentation of Multiple Sclerosis (MS) lesions in 3D MR images. It builds on the discriminative random decision forest framework to provide a voxel-wise probabilistic classification of the volume. Our method uses multi-channel MIR intensities (T1, T2, Flair), spatial prior and long-range comparisons with 3D regions to discriminate lesions. A symmetry feature is introduced accounting for the fact that some MS lesions tend to develop in an asymmetric way. Quantitative evaluation of the data is carried out on publicly available labeled cases from the MS Lesion Segmentation Challenge 2008 dataset and demonstrates improved results over the state of the art.
منابع مشابه
Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images
A new algorithm is presented for the automatic segmentation of Multiple Sclerosis (MS) lesions in 3D Magnetic Resonance (MR) images. It builds on a discriminative random decision forest framework to provide a voxel-wise probabilistic classification of the volume. The method uses multi-channel MR intensities (T1, T2, and FLAIR), knowledge on tissue classes and long-range spatial context to discr...
متن کاملSpatial Decision Forests for Glioma Segmentation in Multi-Channel MR Images
A fully automatic algorithm is presented for the automatic segmentation of gliomas in 3D MR images. It builds on the discriminative random decision forest framework to provide a voxel-wise probabilistic classification of the volume. Our method uses multi-channel MR intensities (T1, T1C, T2, Flair), spatial prior and long-range comparisons with 3D regions to discriminate lesions. A symmetry feat...
متن کاملAutomated Segmentation of MS Lesions from Multi-channel MR Images
Quantitative analysis of MR images is becoming increasingly important as a surrogate marker in clinical trials in multiple sclerosis (MS). This paper describes a fully automated model-based method for segmentation of MS lesions from multi-channel MR images. The method simultaneously corrects for MR eld inhomogeneities, estimates tissue class distribution parameters and classiies the image voxel...
متن کاملDecision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR
We present a method for automatic segmentation of high-grade gliomas and their subregions from multi-channel MR images. Besides segmenting the gross tumor, we also differentiate between active cells, necrotic core, and edema. Our discriminative approach is based on decision forests using context-aware spatial features, and integrates a generative model of tissue appearance, by using the probabi...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 1 شماره
صفحات -
تاریخ انتشار 2010